Optimal Experimental Design for Modeling Battery Degradation

نویسندگان

  • Joel C. Forman
  • Scott J. Moura
  • Jeffrey L. Stein
  • Hosam K. Fathy
چکیده

Accurate battery health modeling allows one to make better design decisions, enables health conscious control, and allows for feed-forward State of Health estimation. However, experiments are necessary in order to obtain and validate these models. Unfortunately, battery health experiments are costly in terms of time, person-hours, and equipment. This makes it extremely important to minimize the number of experimental iterations. This paper aims to minimize time and expense of experiments while maximizing information gathered by bridging an important gap between the Optimal Experimental Design (OED) and the battery health experimental/modeling literature. We demonstrate how to apply static OED methods to a battery aging experiment. This allows us to select a set of Constant Current Constant Voltage (CCCV) cycles that maximizes the amount of information gathered in turn allowing us to better identify the health model parameters. The CCCV cycling is carried out in a laboratory using 14 LiFePO4 cells (10 for fitting and 4 for validation). Each of these cells undergoes 429 days of battery health cycling. Results from these experiments include: a model of battery capacity fade based on voltage and current, battery health dependence on voltage, and a lack of power fade under the cycling conditions. The use of OED to coordinate our model form and experiment helped to ensure a fruitful model resulted when processing the collected data. Based on this success we suggest a ∗Address all correspondence to this author. generalized framework for Optimal Battery Health Model Experiments (OBHME), which allows one to apply OED to a variety of related problems. NOMENCLATURE F Fisher Information Matrix [Various] H Battery Capacity [Various] I Battery Current [Amp] I+ CCCV Charge Current Limit [Amp] I− CCCV Discharge Current Limit [Amp] Itrickle CCCV Trickle Current Limit [Amp] P Battery Power [Watt] U Trial Matrix [Various] V Battery Terminal Voltage [Volt] Vmin CCCV Minimum Voltage [Volt] Vmax CCCV Maximum Voltage [Volt] f (·) Experiment Regressor Function [Various] i Model Parameter Index [Index] j Experiment Index [Index] k Trial Index [Index] m Number of Parameters [Unitless] n Number of Trials [Unitless] p Number of Possible Trials [Unitless] q Number of Trials in Experiment [Unitless] t f Duration of Repeated Cycle [Sec] thold CCCV Float Hold Time [Sec] ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference DSCC2012-MOVIC2012 1 Copyright © 2012 by ASME DSCC2012-MOVIC2012-8751 October 17-19, 2012, Fort Lauderdale, Florida, USA u Experiment Regressors [Various] Ξ All Possible Experiments [Set] α Optimized Trial Index [Index] β Model Parameters [Various] λ Trial Time Fraction [Unitless] σ Standard Deviation of Measurement Noise [Various]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of experimental design approach for optimization of the photocatalytic degradation of humic substances in aqueous solution using immobilized ZnO nanoparticles

Degradation of humic substances in water is important due to its adverse effects on the environment and human health. The aim of this study was modeling and investigating the degradation of humic substances in water using immobilized ZnO as a catalyst. ZnO nanoparticles were synthesized through simple coprecipitation (CPT) method and immobilized on glass plates. The immobilized ZnO nanocatalyst...

متن کامل

Optimal Scheduling of Battery Energy Storage System in Distribution Network Considering Uncertainties using hybrid Monte Carlo- Genetic Approach

This paper proposes a novel hybrid Monte Carlo simulation-genetic approach (MCS-GA) for optimal operation of a distribution network considering renewable energy generation systems (REGSs) and battery energy storage systems (BESSs). The aim of this paper is to design an optimal charging /discharging scheduling of BESSs so that the total daily profit of distribution company (Disco) can be maximiz...

متن کامل

Photocatalytic degradation of rhodamine B by nano bismuth oxide: Process modeling by response surface methodology (RSM)

The photocatalytic activity of nano-Bi2O3 was evaluated in degradation of rhodamine B (RhB) as a model of dye pollutant from waste waters. Nano sized Bi2O3 was synthesized using the chemical precipitation method. The as-prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spect...

متن کامل

Photocatalytic degradation of rhodamine B by nano bismuth oxide: Process modeling by response surface methodology (RSM)

The photocatalytic activity of nano-Bi2O3 was evaluated in degradation of rhodamine B (RhB) as a model of dye pollutant from waste waters. Nano sized Bi2O3 was synthesized using the chemical precipitation method. The as-prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spect...

متن کامل

Optimal Threshold Control for Energy Arbitrage with Degradable Battery Storage

Energy arbitrage has the potential to make electric grids more efficient and reliable. Batteries hold great promise for energy storage in arbitrage but can degrade rapidly with use. In this paper, we analyze the impact of storage degradation on the structure of optimal policies in energy arbitrage. We derive properties of the battery degradation response that are sufficient for the existence of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012